

 Navigation

 	
 index

 	
 next |

 	TensorVision 0.1.dev1 documentation

Welcome to TensorVision

TensorVision is a library to build, train and evaluate neural networks in
TensorFlow.

TensorVision is a work in progress, input is welcome. The available
documentation is limited for now. The project is on GitHub [https://github.com/TensorVision/TensorVision].

User Guide

The TensorVision user guide explains how to install TensorVision, how to build
and train neural networks using TensorVision, and how to contribute to the
library as a developer.

	Installation
	Prerequisites

	Stable TensorVision release

	Bleeding-edge version

	Development installation

	GPU support

	Configuration

	Tutorial
	Basics

	Workflow

	Scripts

	Hypes file

	Development
	What to contribute

	How to contribute

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	tensorvision.analyze

	tensorvision.core

	tensorvision.eval

	tensorvision.utils

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

Installation

TensorVision has a couple of prerequisites that need to be installed first, but
it is not very picky about versions.

Most of the instructions below assume you are running a Linux or Mac system,
but are otherwise very generic.

If you run into any trouble, please check the TensorFlow installation instructions [https://www.tensorflow.org/versions/r0.7/get_started/os_setup.html] which cover installing
the prerequisites for a range of operating systems, or ask for help as a GitHub
issue (https://github.com/TensorVision/TensorVision/issues).

Prerequisites

Python + pip

TensorVision currently requires Python 2.7 or 3.4 to run. Please install Python
via the package manager of your operating system if it is not included already.

Python includes pip for installing additional modules that are not shipped
with your operating system, or shipped in an old version, and we will make use
of it below. We recommend installing these modules into your home directory
via --user, or into a virtual environment [http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/]
via virtualenv.

C compiler

Numpy/scipy require a compiler if you install them via pip. On Linux, the
default compiler is usually gcc, and on Mac OS, it’s clang. Again,
please install them via the package manager of your operating system.

numpy/scipy + BLAS

TensorVision requires numpy. Numpy/scipy rely on a BLAS library to provide fast
linear algebra routines. They will work fine without one, but a lot slower, so
it is worth getting this right (but this is less important if you plan to use a
GPU).

If you install numpy and scipy via your operating system’s package manager,
they should link to the BLAS library installed in your system. If you install
numpy and scipy via pip install numpy and pip install scipy, make sure
to have development headers for your BLAS library installed (e.g., the
libopenblas-dev package on Debian/Ubuntu) while running the installation
command. Please refer to the numpy/scipy build instructions [http://www.scipy.org/scipylib/building/index.html] if in doubt.

Stable TensorVision release

Currently, no stable version is available.

Bleeding-edge version

To install the latest version of TensorVision, run the following commands:

pip install --upgrade https://github.com/TensorVision/TensorVision/archive/master.zip

Again, add --user if you want to install to your home directory instead.

Development installation

Alternatively, you can install TensorVision from source, in a way that any
changes to your local copy of the source tree take effect without requiring a
reinstall. This is often referred to as editable or development mode.
Firstly, you will need to obtain a copy of the source tree:

git clone https://github.com/TensorVision/TensorVision.git

It will be cloned to a subdirectory called TensorVision. Make sure to place
it in some permanent location, as for an editable installation, Python will
import the module directly from this directory and not copy over the files.
Enter the directory and install the requirements:

cd TensorVision
pip install -r requirements.txt

You should also install the additional development requirements which can be
found in requirements-dev.txt.

To install the TensorVision package itself, in editable mode, run:

pip install --editable .

As always, add --user to install it to your home directory instead.

Optional: If you plan to contribute to TensorVision, you will need to fork
the TensorVision repository on GitHub. This will create a repository under your
user account. Update your local clone to refer to the official repository as
upstream, and your personal fork as origin:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/TensorVision.git

If you set up an SSH key [https://help.github.com/categories/ssh/], use the
SSH clone URL instead: git@github.com:<your-github-name>/TensorVision.git.

You can now use this installation to develop features and send us pull requests
on GitHub, see Development!

You can run the tests by

python setup.py test

GPU support

Thanks to TensorFlow, TensorVision transparently supports training your
networks on a GPU, which may be 10 to 50 times faster than training them on a
CPU. Currently, this requires an NVIDIA GPU with CUDA support, and some
additional software for TensorFlow to use it.

CUDA

Install the latest CUDA Toolkit and possibly the corresponding driver available
from NVIDIA: https://developer.nvidia.com/cuda-downloads

Closely follow the Getting Started Guide linked underneath the download table
to be sure you don’t mess up your system by installing conflicting drivers.

After installation, make sure /usr/local/cuda/bin is in your PATH, so
nvcc --version works. Also make sure /usr/local/cuda/lib64 is in your
LD_LIBRARY_PATH, so the toolkit libraries can be found.

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

Configuration

TensorVision comes with reasonable defaults. You only need to read this if you
want tweak it to your needs.

TensorVision is configured with environment variables. It is quite easy to
set them yourself (see multiple ways [http://unix.stackexchange.com/a/117470/4784]).
The supported variables are:

	TV_DIR_DATA: The default directory where to look for data.

	TV_DIR_RUNS: The default directory where to look for the model.

	TV_IS_DEV: Either 0 or 1 - set if you want to see debug messages.

	TV_PLUGIN_DIR: Directory with Python scripts which will be loaded by utils.py

	TV_SAVE: Whether to keep all runs on default. By default runs will be written to TV_DIR_RUNS/debug and overwritten by newer runs, unless tv-train --save is called.

	TV_USE_GPUS: Controll which gpus to use. Default all GPUs are used, GPUs
can be specified using --gpus. Setting TV_USE_GPUS='force' makes the
flag --gpus compulsory, this is useful in cluster environoments. Use
TV_USE_GPUS='0,3' to run Tensorflow an the GPUs with ids 0 and 3.

	TV_STEP_SHOW: After how many epochs of training should the TV_STEP_STR be printed?

	TV_STEP_EVAL: After how many epochs of training evaluation is done.

	TV_STEP_WRITE: After how many epochs of training checkpoints are written to disk.

	TV_MAX_KEEP: How many checkpoints to keep.

	TV_STEP_STR: Set what you want to see each 100th step of the training.
The default is

Step {step}/{total_steps}: loss = {loss_value:.2f}
({sec_per_batch:.3f} sec (per Batch);
{examples_per_sec:.1f} examples/sec;)

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

Tutorial

This tutorial introduces the general workflow when using TensorVision.
Examples can be found in the Modell Zoo [https://github.com/TensorVision/modell_zoo] repository.

Basics

Train a model:

tv-train --hypes config.json

Evaluate a model:

python eval.py

Flags:

	--hypes=myconfig.json

	--name=myname

Workflow

Each time you get a new task

Create JSON file

Create a json file (e.g. cifar10_cnn.json). It has at least the following
content:

{
 "model": {
 "input_file": "examples/inputs/cifar10_input.py",
 "architecture_file" : "examples/networks/cifar_net.py",
 "objective_file" : "examples/objectives/softmax_classifier.py",
 "optimizer_file" : "examples/optimizer/exp_decay.py"
 }
}

Adjust input file

The input_file contains the path to a Python file. This Python file has to
have a function inputs(hypes, q, phase, data_dir).

The parameters of inputs are:

	hypes: A dictionary which contains everything your model.json file
had.

	q: A queue (e.g. FIFOQueue [https://www.tensorflow.org/versions/r0.8/how_tos/threading_and_queues/index.html])

	phase: Either train or val

	data_dir: Path to the data. This can be set with TV_DIR_DATA.

The expected return value is a tuple (xs, ys), where x is a list of features
and y is a list of labels.

Adjust architecture file

The architecture_file contains the architecture of the network. It has to
have the function inference(hypes, images, train=True), which takes image
tensors creates a computation graph to produce logits

Adjust objective file

The objective_file contains task spezific code od the model. It
has to implement the following functions:

	decoder(hypes, images, train=True)

	loss(hypes, decoder, labels)

	evaluation(hypes, decoder, labels)

Adjust the solver file

The optimizer_file contains the path to a Python file. This Python file has
to have a function training(H, loss, global_step, learning_rate). It defines how one tries to find a minimum of the loss function. Additionally it should provide a function get_learning_rate(hype, global_step), which returns the current learning rate at each step.

Scripts

TensorVision brings some scripts which you can use:

	tv-train: Trains, evaluates and saves the model network using a queue.

	tv-continue: Continues training of a model from logdir.

	tv-analyze: Evaluates the model.

	tv-maskstats: Get statistics about the distribution of classes in the masks.

Hypes file

TensorVision makes use of a configuration file for each project. As it was
originally intended to have hyperparameters of models, it is commonly called
“hypes file” or hypes.json throughout this project.

This configuration file allows you to adjust given networks easily to new
problem domains.

data

It is recommended to create one json file for the training data sources as
well as one for the testing data sources. Each file is a list of dictionaries,
where each dictionary has the keys raw and mask. For example, your
trainfiles.json could look like this:

[
 {
 "raw": "/home/moose/GitHub/MediSeg/DATA/OP1/img_00.png",
 "mask": "/home/moose/GitHub/MediSeg/DATA/OP1/img_00_GT.png"
 },
 {
 "raw": "/home/moose/GitHub/MediSeg/DATA/OP1/img_01.png",
 "mask": "/home/moose/GitHub/MediSeg/DATA/OP1/img_01_GT.png"
 },
 {
 "raw": "/home/moose/GitHub/MediSeg/DATA/OP1/img_02.png",
 "mask": "/home/moose/GitHub/MediSeg/DATA/OP1/img_02_GT.png"
 }
]

You should add the path of those files to your hypes.json:

"data": {
 "train": "../../DATA/trainfiles.json",
 "test": "../../DATA/testfiles.json"
},

While this is not required, it will allow you to use tv-maskstats and make
your code more readable and easier to adjust.

classes

It is recommended to add a description of your labeled data to your
hyperparameters file. This makes your code more readable and gives the
possibility to use tv-maskstats as well as tensorvision.utils.load_segmentation_mask().
The classes block looks like this:

"classes": [
 {"name": "background",
 "colors": ["#000000"],
 "output": "#ff000000"},
 {"name": "instrument",
 "colors": ["#464646", "#a0a0a0", "#ffffff", "default"],
 "output": "#00ff007f"}
]

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

Development

The TensorVision project was started by Marvin Teichmann and Martin Thoma in
February 2016.

As an open-source project by researchers for researchers, we highly welcome
contributions! Every bit helps and will be credited.

What to contribute

Give feedback

To send us general feedback, questions or ideas for improvement.

If you have a very concrete feature proposal, add it to the issue tracker on
GitHub [https://github.com/TensorVision/TensorVision/issues]:

	Explain how it would work, and link to a scientific paper if applicable.

	Keep the scope as narrow as possible, to make it easier to implement.

Report bugs

Report bugs at the issue tracker on GitHub [https://github.com/TensorVision/TensorVision/issues].
If you are reporting a bug, please include:

	your TensorVision and TensorFlow version.

	steps to reproduce the bug, ideally reduced to a few Python commands.

	the results you obtain, and the results you expected instead.

Fix bugs

Look through the GitHub issues for bug reports. Anything tagged with “bug” is
open to whoever wants to implement it. If you discover a bug in TensorVision
you can fix yourself, by all means feel free to just implement a fix and not
report it first.

Implement features

Look through the GitHub issues for feature proposals. Anything tagged with
“feature” or “enhancement” is open to whoever wants to implement it. If you
have a feature in mind you want to implement yourself, please note that we
cannot guarantee upfront that your code will be included. Please do not
hesitate to just propose your idea in a GitHub issue first, so we can discuss
it and/or guide you through the implementation.

Write documentation

Whenever you find something not explained well, misleading, glossed over or
just wrong, please update it! The Edit on GitHub link on the top right of
every documentation page and the [source] link for every documented entity
in the API reference will help you to quickly locate the origin of any text.

How to contribute

Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit
on GitHub link on the top right of a documentation page or the [source] link
of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser
and send us a Pull Request. All you need for this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup
TensorVision for development.

Development setup

First, follow the instructions for performing a development installation of
TensorVision (including forking on GitHub):
Development installation

To be able to run the tests and build the documentation locally, install
additional requirements with: pip install -r requirements-dev.txt (adding
--user if you want to install to your home directory instead).

If you use the bleeding-edge version of TensorFlow, then instead of running that
command, just use pip install to manually install all dependencies listed
in requirements-dev.txt with their correct versions; otherwise it will
attempt to downgrade TensorFlow to the known good version in requirements.txt.

Documentation

The documentation is generated with Sphinx [http://sphinx-doc.org/latest/index.html]. To build it locally, run the
following commands:

cd docs
make html

Afterwards, open docs/_build/html/index.html to view the documentation as
it would appear on readthedocs [http://tensorvision.readthedocs.org/]. If you
changed a lot and seem to get misleading error messages or warnings, run
make clean html to force Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to
ensure consistency throughout the library. For additional information on the
syntax and conventions used, please refer to the following documents:

	reStructuredText Primer [http://sphinx-doc.org/rest.html]

	Sphinx reST markup constructs [http://sphinx-doc.org/markup/index.html]

	A Guide to NumPy/SciPy Documentation [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

Testing

Tensorvision wants to achieve a code coverage of 100%, which creates some duties:

	Whenever you change any code, you should test whether it breaks existing
features by just running the test suite. The test suite will also be run by
Travis [https://travis-ci.org/] for any Pull Request to TensorVision.

	Any code you add needs to be accompanied by tests ensuring that nobody else
breaks it in future. Coveralls [https://coveralls.io/] will check whether
the code coverage stays at 100% for any Pull Request to TensorVision.

	Every bug you fix indicates a missing test case, so a proposed bug fix should
come with a new test that fails without your fix.

To run the full test suite, just do

py.test

Testing will end with a code
coverage report specifying which code lines are not covered by tests, if any.
Furthermore, it will list any failed tests, and failed PEP8 [https://www.python.org/dev/peps/pep-0008/] checks.

Finally, for a loop-on-failing mode, do pip install pytest-xdist and run
py.test -f. This will pause after the run, wait for any source file to
change and run all previously failing tests again.

Before commiting any change, you should run

tv-train --hypes examples/cifar10_minimal.json
tv-analyze --hypes examples/cifar10_minimal.json --logdir examples/RUNS/debug/

to see if everything still works as expected.

Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation
looks good without any markup errors, commit your changes to a new branch, push
that branch to your fork and send us a Pull Request via GitHub’s web interface.

All these steps are nicely explained on GitHub:
https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to
help us reviewing it. If it is fixing an open issue, say, issue #123, add
Fixes #123, Resolves #123 or Closes #123 to the description text, so
GitHub will close it when your request is merged.

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

tensorvision.analyze

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

tensorvision.core

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TensorVision 0.1.dev1 documentation

tensorvision.eval

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	TensorVision 0.1.dev1 documentation

tensorvision.utils

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	TensorVision 0.1.dev1 documentation

Index

 Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		TensorVision 0.1.dev1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

_static/up.png

_static/down-pressed.png

modules/train.html

 Navigation

 		
 index

 		TensorVision 0.1.dev1 documentation »

tensorvision.train

 © Copyright 2016, Marvin Teichmann and Martin Thoma.
 Created using Sphinx 1.2.3.

